Search results for "Eukaryotic initiation factor"

showing 10 items of 21 documents

Time dependent expression of the blood biomarkers EIF2D and TOX in patients with schizophrenia

2019

Background During last years, there has been an intensive search for blood biomarkers in schizophrenia to assist in diagnosis, prognosis and clinical management of the disease. Methods In this study, we first conducted a weighted gene coexpression network analysis to address differentially expressed genes in peripheral blood from patients with chronic schizophrenia (n?=?30) and healthy controls (n?=?15). The discriminating performance of the candidate genes was further tested in an independent cohort of patients with first-episode schizophrenia (n?=?124) and healthy controls (n?=?54), and in postmortem brain samples (cingulate and prefrontal cortices) from patients with schizophrenia (n?=?3…

0301 basic medicineOncologyAdultMalemedicine.medical_specialtyCandidate geneTime FactorsImmunologyEukaryotic Initiation Factor-2Gene ExpressionPrefrontal CortexDiseaseCohort Studies03 medical and health sciencesBehavioral Neuroscience0302 clinical medicineImmune systemPrognosis of schizophreniaInternal medicinemedicineHumansGeneEndocrine and Autonomic Systemsbusiness.industryCase-control studyHigh Mobility Group ProteinsBrainMiddle Agedmedicine.diseasePrognosis030104 developmental biologySchizophreniaCase-Control StudiesCohortSchizophreniaFemalebusinessTranscriptome030217 neurology & neurosurgeryBiomarkers
researchProduct

Inappropriate translation inhibition and P-body formation cause cold-sensitivity in tryptophan-auxotroph yeast mutants

2017

In response to different adverse conditions, most eukaryotic organisms, including Saccharomyces cerevisiae, downregulate protein synthesis through the phosphorylation of eIF2α (eukaryotic initiation factor 2α) by Gcn2, a highly conserved protein kinase. Gcn2 also controls the translation of Gcn4, a transcription factor involved in the induction of amino acid biosynthesis enzymes. Here, we have studied the functional role of Gcn2 and Gcn2-regulating proteins, in controlling translation during temperature downshifts of TRP1 and trp1 yeast cells. Our results suggest that neither cold-instigated amino acid limitation nor Gcn2 are involved in the translation suppression at low temperature. Howev…

0301 basic medicineSaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeeIF2αSaccharomyces cerevisiaeProtein Serine-Threonine KinasesBiology03 medical and health sciencesPolysomeEukaryotic initiation factormedicineProtein biosynthesisLow temperatureEukaryotic Initiation FactorsPhosphorylationProtein kinase AMolecular BiologyTryptophanTranslation (biology)Cell Biologybiology.organism_classificationAdaptation PhysiologicalYeastHog1Cold TemperatureBasic-Leucine Zipper Transcription Factors030104 developmental biologyBiochemistryProtein BiosynthesisPolysomesSnf1Cold sensitivityPhosphorylationMitogen-Activated Protein Kinasesmedicine.symptomEnergy MetabolismGcn2 pathwayTranscription FactorsBiochimica et Biophysica Acta (BBA) - Molecular Cell Research
researchProduct

Effects of muscular dystrophy, exercise and blocking activin receptor IIB ligands on the unfolded protein response and oxidative stress

2016

Protein homeostasis in cells, proteostasis, is maintained through several integrated processes and pathways and its dysregulation may mediate pathology in many diseases including Duchenne muscular dystrophy (DMD). Oxidative stress, heat shock proteins, endoplasmic reticulum (ER) stress and its response, i.e. unfolded protein response (UPR), play key roles in proteostasis but their involvement in the pathology of DMD are largely unknown. Moreover, exercise and activin receptor IIB blocking are two strategies that may be beneficial to DMD muscle, but studies to examine their effects on these proteostasis pathways are lacking. Therefore, these pathways were examined in the muscle of mdx mice, …

0301 basic medicineX-Box Binding Protein 1Activin Receptors Type IIEukaryotic Initiation Factor-2MyostatinUPRBiochemistryMiceeIF-2 KinaseThioredoxinsSirtuin 1ENDOPLASMIC-RETICULUM STRESSDISULFIDE-ISOMERASEPhosphorylationta315Endoplasmic Reticulum Chaperone BiPHeat-Shock ProteinsIN-VIVOta3141Activin receptorMOUSE MODELER STRESSEndoplasmic Reticulum Stress3. Good healthmedicine.anatomical_structuremyostatinPRESERVES MUSCLE FUNCTIONER-stressSKELETAL-MUSCLEmdxSignal TransductionEXPRESSIONmedicine.medical_specialtyXBP1MDX MICEBiologyProtein Serine-Threonine Kinases03 medical and health sciencesPhysiology (medical)Internal medicineHeat shock proteinPhysical Conditioning AnimalEndoribonucleasesmedicineAnimalsHumansRNA MessengerMuscle SkeletalSkeletal muscleMyostatinGENEActivating Transcription Factor 6Immunoglobulin Fc FragmentsMuscular Dystrophy DuchenneDisease Models Animal030104 developmental biologyProteostasisEndocrinologyGene Expression RegulationUnfolded protein responsebiology.proteinMice Inbred mdxProteostasisUnfolded Protein Response3111 BiomedicineCarrier ProteinsACVR2B
researchProduct

Cryptotanshinone deregulates unfolded protein response and eukaryotic initiation factor signaling in acute lymphoblastic leukemia cells.

2015

Abstract Background: Unfolded protein responses (UPR) determine cell fate and are recognized as anticancer targets. In a previous research, we reported that cryptotanshinone (CPT) exerted cytotoxic effects toward acute lymphoblastic leukemia cells through mitochondria-mediated apoptosis. Purpose: In the present study, we further investigated the role of UPR in CPT-induced cytotoxicity on acute lymphoblastic leukemia cells by applying tools of pharmacogenomics and bioinformatics. Methods: Gene expression profiling was performed by mRNA microarray hybridization. Potential transcription factor binding motifs were identified in the promoter regions of the deregulated genes by Cistrome software.…

0301 basic medicineendocrine systemXBP1Eukaryotic Initiation Factor-2Pharmaceutical ScienceApoptosisBiology03 medical and health sciencesPhosphatidylinositol 3-KinasesEukaryotic initiation factorCell Line TumorDrug DiscoveryHumansheterocyclic compoundsRNA MessengerEukaryotic Initiation FactorsTranscription factorPharmacologyeIF2ATF4Computational BiologyPromoterPhenanthrenesPrecursor Cell Lymphoblastic Leukemia-LymphomaMolecular Docking Simulation030104 developmental biologyComplementary and alternative medicineCistromePharmacogeneticsEukaryotic Initiation Factor-4AUnfolded protein responseCancer researchUnfolded Protein ResponseMolecular MedicineTranscription Factor CHOPSignal TransductionTranscription FactorsPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

Combination of osteopontin and activated leukocyte cell adhesion molecule as potent prognostic discriminators in HER2- and ER-negative breast cancer.

2010

Background: To analyse the discriminative impact of osteopontin (OPN) and activated leukocyte cell adhesion molecule (ALCAM), combined with human epidermal growth factor 2 (HER2) and oestrogen receptor (ER) in breast cancer. Methods: Osteopontin, ALCAM, HER2 and ER mRNA expression in breast cancer tissues of 481 patients were analysed (mRNA microarray analysis, kinetic RT–PCR). Hierarchical clustering was performed in training cohort A (N=100, adjuvant treatment) and validation cohorts B (N=200, no adjuvant treatment, low-risk) and C (N=181, adjuvant treatment, high-risk). Results: Negative/low ER and HER2, high OPN and low ALCAM mRNA expression helped to identify patients at particularly h…

AdultRiskCancer ResearchosteopontinReceptor ErbB-2Eukaryotic Initiation Factor-3discriminative markersBreast NeoplasmsDisease-Free SurvivalHER2 and ER-negative breast cancerBreast cancerActivated-Leukocyte Cell Adhesion MoleculemedicineCluster AnalysisHumansOsteopontinRNA MessengerReceptorskin and connective tissue diseasesMolecular DiagnosticsALCAMALCAMAgedOligonucleotide Array Sequence AnalysisbiologyCell adhesion moleculeDecision TreesActivated-Leukocyte Cell Adhesion MoleculeCancerMiddle Agedmedicine.diseasePrognosisOncologyReceptors EstrogenImmunologybiology.proteinCancer researchFemaleBreast diseaseBritish journal of cancer
researchProduct

Cellular stress induces cap-independent alpha-enolase/MBP-1 translation.

2015

AbstractMyc promoter-binding protein-1 (MBP-1) is a shorter protein variant of the glycolytic enzyme alpha-enolase. Although several lines of evidence indicate that MBP-1 acts as a tumor suppressor, the cellular mechanisms and signaling pathways underlying MBP-1 expression still remain largely elusive. To dissect these pathways, we used the SkBr3 breast cancer cell line and non-tumorigenic HEK293T cells ectopically overexpressing alpha-enolase/MBP-1. Here, we demonstrate that induced cell stresses promote MBP-1 expression through the AKT/PERK/eIF2α signaling axis. Our results contribute to shedding light on the molecular mechanisms underlying MBP-1 expression in non-tumorigenic and cancer c…

Alpha-enolaseCellEukaryotic Initiation Factor-2Alternative translationBiochemistryeIF-2 KinaseBreast cancerHEK293 CellStructural BiologyProtein IsoformsbiologyMedicine (all)Translation (biology)Recombinant ProteinEndoplasmic Reticulum StressRecombinant ProteinsNeoplasm ProteinsDNA-Binding ProteinsGene Expression Regulation Neoplasticmedicine.anatomical_structureFemaleSignal transductionMyc promoter-binding protein-1Breast NeoplasmHumanSignal TransductionCell SurvivalDNA-Binding ProteinRecombinant Fusion ProteinsBiophysicsBreast NeoplasmsNeoplasm ProteinGeneticCell Line TumorEndoplasmic reticulum streGeneticsmedicineBiomarkers TumorHumansGene SilencingMolecular BiologyProtein kinase BTumor Suppressor ProteinTumor Suppressor ProteinsHEK 293 cellsProtein IsoformCell BiologySettore BIO/18 - GeneticaHEK293 CellsBiophysicGene Expression RegulationPhosphopyruvate HydrataseCancer cellbiology.proteinUnfolded protein responseCancer researchProto-Oncogene Proteins c-aktRecombinant Fusion ProteinFEBS letters
researchProduct

Early adaptive response of the retina to a pro-diabetogenic diet: Impairment of cone response and gene expression changes in high-fructose fed rats

2015

The lack of plasticity of neurons to respond to dietary changes, such as high fat and high fructose diets, by modulating gene and protein expression has been associated with functional and behavioral impairments that can have detrimental consequences. The inhibition of high fat-induced rewiring of hypothalamic neurons induced obesity. Feeding rodents with high fructose is a recognized and widely used model to trigger obesity and metabolic syndrome. However the adaptive response of the retina to short term feeding with high fructose is poorly documented. We therefore aimed to characterize both the functional and gene expression changes in the neurosensory retina of Brown Norway rats fed duri…

Blood GlucoseLeptinMalemedicine.medical_specialtyretinamedicine.medical_treatment[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionEukaryotic Initiation Factor-2BiologyDiabetes Mellitus ExperimentalfructoseCellular and Molecular Neurosciencechemistry.chemical_compoundDownregulation and upregulationInternal medicineGene expressionDietary CarbohydratesmedicineAnimalsInsulin[SDV.MHEP.OS]Life Sciences [q-bio]/Human health and pathology/Sensory Organs2. Zero hungerRetinamedicine.diagnostic_testGene Expression ProfilingLeptinInsulinFructoseEndoplasmic Reticulum Stressmedicine.diseaseCrystallinsSensory SystemsRatsOphthalmologyCholesterolmedicine.anatomical_structureEndocrinologyGene Expression Regulationchemistry[ SDV.MHEP.OS ] Life Sciences [q-bio]/Human health and pathology/Sensory OrgansFructosamineRetinal Cone Photoreceptor Cellsgene expressionsense organsMetabolic syndromeelectroretinographydiet[SDV.AEN]Life Sciences [q-bio]/Food and NutritionElectroretinography
researchProduct

Yeast mRNA cap-binding protein Cbc1/Sto1 is necessary for the rapid reprogramming of translation after hyperosmotic shock.

2011

Global translation is inhibited in Saccharomyces cerevisiae cells under osmotic stress; nonetheless, osmostress-protective proteins are synthesized. We found that translation mediated by the mRNA cap-binding protein Cbc1 is stress-resistant and necessary for the rapid translation of osmostress-protective proteins under osmotic stress.

Cell PhysiologySaccharomyces cerevisiae ProteinsOsmotic shockRNA StabilitySaccharomyces cerevisiaeCycloheximideBiology03 medical and health scienceschemistry.chemical_compoundGene Knockout TechniquesEukaryotic translationOsmotic PressureStress PhysiologicalPolysomeGene Expression Regulation FungalProtein biosynthesisRNA MessengerMolecular Biology030304 developmental biologyCell Nucleus0303 health sciencesMicrobial ViabilityOsmotic concentration030302 biochemistry & molecular biologyEIF4ENuclear ProteinsTranslation (biology)Cell BiologyArticlesAdaptation PhysiologicalProtein TransportEukaryotic Initiation Factor-4EchemistryBiochemistryRNA Cap-Binding ProteinsPolyribosomesProtein BiosynthesisProtein BindingMolecular biology of the cell
researchProduct

Cytotoxicity of 4-hydroxy-N-(naphthalen-1-yl)-2-oxo-2H-chromene-3-carboxamide in multidrug-resistant cancer cells through activation of PERK/eIF2α/AT…

2021

After decades of research, multidrug resistance (MDR) remains a huge challenge in cancer treatment. In this study, the cytotoxic of 4-hydroxy-N-(naphthalen-1-yl)-2-oxo-2H-chromene-3-carboxamide (MCC1734) has been investigated towards multidrug-resistant cancer cell lines. MCC1734 exerted cytotoxicity on cell lines expressing different mechanisms of drug resistance (P-glycoprotein, BCRP, ABCB5, EGFR, p53 knockout) to a different extent. Interestingly, sensitive CCRF-CEM cells and multidrug-resistant P-gp-overexpressing CEM/ADR5000 cells represented similar sensitivity towards MCC1734, indicating MCC1734 can bypass P-gp-mediated resistance. Microarray-based mRNA expression revealed that MCC17…

Cell SurvivalEukaryotic Initiation Factor-2Antineoplastic AgentsMitochondrionBiochemistryFlow cytometryeIF-2 KinaseCell Line TumorOxazinesmedicineHumansCytotoxic T cellGene Regulatory NetworksCytotoxicityPharmacologyMolecular Structuremedicine.diagnostic_testChemistryCell cycleActivating Transcription Factor 4Gene Expression Regulation NeoplasticXanthenesDrug Resistance NeoplasmCell cultureApoptosisCancer cellCancer researchGene DeletionBiochemical Pharmacology
researchProduct

Inhibition of stearoyl-CoA desaturase 1 expression induces CHOP-dependent cell death in human cancer cells.

2010

Background Cancer cells present a sustained de novo fatty acid synthesis with an increase of saturated and monounsaturated fatty acid (MUFA) production. This change in fatty acid metabolism is associated with overexpression of stearoyl-CoA desaturase 1 (Scd1), which catalyses the transformation of saturated fatty acids into monounsaturated fatty acids (e.g., oleic acid). Several reports demonstrated that inhibition of Scd1 led to the blocking of proliferation and induction of apoptosis in cancer cells. Nevertheless, mechanisms of cell death activation remain to be better understood. Principal Findings In this study, we demonstrated that Scd1 extinction by siRNA triggered abolition of de nov…

Cell SurvivalEukaryotic Initiation Factor-2lcsh:MedicineApoptosisCHOPBiologyCell Biology/Cell SignalingCell Linechemistry.chemical_compoundCell Line TumorNeoplasmsHumansRNA Small Interferinglcsh:ScienceEndoplasmic Reticulum Chaperone BiPFatty acid synthesisHeat-Shock ProteinsCell ProliferationTranscription Factor CHOPMultidisciplinaryFatty acid metabolismCell DeathCell growthFatty Acidslcsh:RCell Biology/Cellular Death and Stress ResponsesMolecular biologyCell biologychemistryOncologyApoptosisCancer celllipids (amino acids peptides and proteins)lcsh:QStearoyl-CoA desaturase-1Stearoyl-CoA DesaturaseTranscription Factor CHOPResearch ArticleOleic AcidPLoS ONE
researchProduct